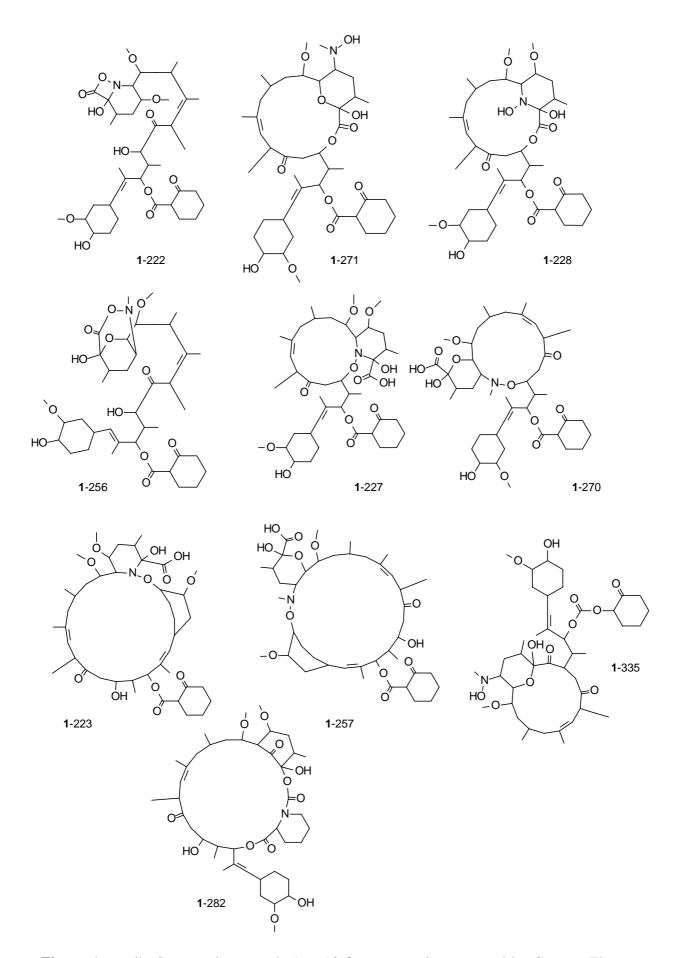
Table: NMR data of ascomycin (COCON input file).

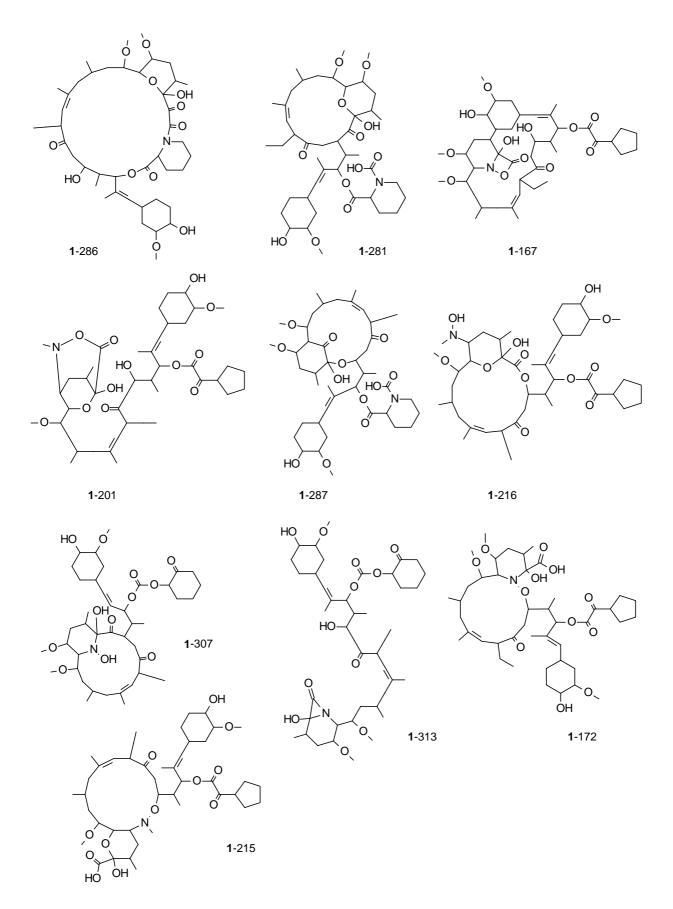
No.	an ^a	H^{b}	$\delta(^{13}C)$ [ppm]	Atype ^c	¹ H, ¹ H-COSY (52) ^d	¹ H, ¹³ C-HMBC (86) ^e	1,1-ADEQ. (59) ^f
1	6	0	169	11			
2	6	1	57	67	3	1, 3, 4, 6, 7	1, 3
3	6	2	28	130	2, 4	5	2, 4
4	6	2	21	130	3		3, 5
5	6	2	24	130	6		4, 6
6	6	2	39	130	5	2, 4, 5, 7	5
7	6	0	165	11			
8	6	0	196	11			
9	6	0	97	4			
10	6	1	35	67	11, 12	9, 11, 12	9, 11, 12
11	6	3	16	193	10	9, 10, 12	10
12	6	2	33	130	10, 13	9, 10, 13	10, 13
13	6	1	74	67	12, 15		12, 15
14	6	3	56	193		13	
15	6	1	73	67	13, 16	9, 12, 13	13, 16
16	6	1	75	67	18		15, 18
17	6	3	57	193		16	
18	6	2	33	130	16, 19	16	16, 19
19	6	1	26	67	18, 20, 21	22	18, 20, 21
20	6	3	20	193	19	18, 19, 21	19
21	6	2	49	130	19	18, 19, 20, 22, 23, 24	19, 22
22	6	0	139	11			
23	6	3	16	193		21, 22, 24	22
24	6	1	123	74	25	21, 23, 25, 26	22, 25
25	6	1	55	67	24, 42	22, 24, 26, 42, 43	24, 26, 42
26	6	0	213	11			
27	6	2	43	130	28	26, 28, 29	26, 28
28	6	1	70	67	27, 29		27, 29
						+	

20		Ι.	10	1.5	20. 20. 21	20	20. 20. 21
29	6	1	40	67	28, 30, 31	28	28, 30, 31
30	6	3	10	193	29	28, 29, 31	29
31	6	1	77	67	29	1, 28, 29, 30, 32, 33, 34	29, 32
32	6	0	132	11			
33	6	3	14	193		31, 32, 34	32
34	6	1	130	74	35	31, 33, 41	32, 35
35	6	1	35	67	34, 36, 41		34, 36, 41
36	6	2	35	130	35, 37	34, 37, 39	35, 37
37	6	1	84	67	36, 39	39	36, 39
38	6	3	57	193		37	
39	6	1	74	67	37, 40	37	37, 40
40	6	2	31	130	39, 41		39, 41
41	6	2	31	130	35, 40		35, 40
42	6	2	25	130	25, 43	24, 25, 26, 43	25, 43
43	6	3	12	193	42	25, 42	42
44	7	0	0	3			
45	8	0	0	2			
46	8	0	0	2			
47	8	0	0	2			
48	8	0	0	2			
49	8	0	0	9			
50	8	0	0	9			
51	8	0	0	9			
52	8	0	0	9			
53	8	0	0	9			
54	8	1	0	65		8, 9, 10	
55	8	1	0	65			
56	8	1	0	65			

^a an stands for atomic number


 $^{^{\}mathrm{b}}\,H$ stands for the number of protons attached to the atom.

^c Atype stands for atom type which represents the hybridisation state of the atom.


^d The COSY correlations are given for both sides of the diagonal. The number in parenthesis is the total number of correlations.

^e The HMBC correlations are given from protons to carbons. The number in parenthesis is the total number of correlations.

f The 1,1-ADEQUATE correlations are theoretical data. The number in parenthesis is the total number of correlations.

Figure (part 1): Structural proposals 1 to 10 for ascomycin generated by COCON. The structures are ordered according to the ranking of the SpecEdit calculation (e. g. **1**-222 is ranked first, **1**-257 is ranked eighth). Long straight lines represent more than one bond.

Figure (part 2): Structural proposals 11 to 20 for ascomycin generated by COCON. The structures are ordered according to the ranking of the SpecEdit calculation.